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Exceptional gauge theories in 3 x 3 matrix formalism 

V Ogievetsky and V Tzeitlint 
Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, Dubna, Moscow, 
USSR 
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Abstract. A matrix interpretation of Tits-Vinberg construction for the Lie algebras of 
exceptional groups is proposed. We use 3 x 3 matrices over Rosenfeld algebra completed 
with its automorphisms which are induced via external multiplication of imaginary units. 
This allows one to express exceptional gauge theories in a compact and comprehensible 
form suitable for the purposes of model building. 

1. Introduction 

Recently, interesting attempts to unify strong, weak and electromagnetic interactions 
into a single gauge theory based upon exceptional groups have been made by Gursey 
and other authors (Giirsey 1975, Giirsey et a1 1976, Giirsey and Sikivie 1976, Sikivie 
and Gursey 1977, Konstein et a1 1977, Ramond 1976, 1977). However, exceptional 
groups possess high dimensions (e.g. dim E6 = 78, dim E, = 133) and a huge number 
of structure constants respectively. Therefore in the standard gauge theory formula- 
tion where the fundamental representation of dimension N is described by an element 
of N-dimensional vector space, and so on, all the calculations become tedious making 
the results hard to comprehend. At the same time a close connection is well known 
between all the exceptional groups and 3 x 3  matrices over the Cayley algebra of 
octonions. Their fundamental representations can be treated compactly in terms of 
such matrices and this fact was used by Gursey (1975). However, their adjoint 
representations also include the automorphisms of the so called Rosenfeld algebras. 

In the present paper some external multiplication operation of imaginary units is 
introduced to represent these automorphisms. In such a way a purely matrix formu- 
lation of the Tits-Vinberg construction is achieved entirely in terms of 3 x 3 matrices. 
The formalism proposed gives a possible way of making compact exceptional gauge 
theories in an adequate group structure form. Both fundamental and adjoint 
representations are found to be generalised 3 x 3 matrices. The invariants take a 
simple form. All the calculations reduce to multiplications of these matrices and 
manipulations with the traces of their products. Reduction of the initial grand group 
to physically interesting subgroups becomes trivial. 

2. An octoniai description of exceptional gauge theories 

According to the famous Hurwitz theorem all the hypercomplex systems of numbers 

i P N Lebedev Physical Institute. 

0305-4770/78/0007- 1419$01 .OO @ 1978 The Institute of Physics 1419 



1420 V Ogievetsky and V Tzeitlin 

reduce to the algebras of real numbers (R), complex numbers (C), quaternions (Q) and 
octonions (0). 

Table 1. 

Algebra R c Q 0 
~ _ _  ~ 

Basis 1 1 ,  i l . q z ,  i = l , 2 , 3  l , e , ,  a = 1  . . .  7 

Involution - is-i q, + - qL e , + - e ,  

Multiplication table 1 . 1 = 1  i 2 = - 1  qgqk - azk + egklql = - +fa&, 

* * 

1 fl 1 5 1  1 3 1  

- ~ 3 )  G2 Continuous group of - 
automorphisms 

In table 1, is a totally antisymmetric tensor of rank 3 ,  f a g ,  are totally antisymmetric 
and f a g , =  1 for a P y = ( l  2 3 )  ( 5  1 6) ,  (6 2 4), (4 3 5 ) ,  (4 7 l), (6 7 3) ,  ( 5  7 2). 
Let us define the quantities eag to represent infinitesimal automorphisms of 8: 

[eag, e,] = L p , + s  (1) 

[ea@, e781 = C a p , v s , r g r v  (2) 
where Lag,vs is a realisation of infinitesimal automorphism on imaginary units e, 

La@.yS = 38ay866 - 38aS8py-faPfq-S 

and Cag,v8,rv are structure constants of group GZ in such a realisation. 
Now we introduce an external multiplication of imaginary units 

e,  V e p  = - e p  Ve,  =eag ( 3 )  
and supply the resulting set of elements 5 = (1, e,, e,@} with the structure of an algebra 
with involution. The latter must be in agreement with involution in (1, e,}. Then 
transformation properties of e,  and eag under the automorphisms group together with 
the involution '*' 

fix the anticommutators: 

{eag, e,} = 0 (5  ) 

(cap, e,d = Lag,+* (6) 
(An arbitrary constant on the right-hand side of equation (6) is chosen to be one 
because of the subsequent realisation of the Tits-Vinberg construction.) Further 
definitions 

(7) 

(8) 

1 
eag V e,* = de,,, e,sI 

ea V eo, = $[ea, e p , ~  
give us the construction of 68 closed with respect to both usual and external 
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multiplication. We may formally introduce an external multiplication in the remain- 
ing Hurwitz algebras and equate it to the usual commutator of imaginary units. In R 
and C it results identically in zero, and in Q it gives an element Ejjkqk because 

[Eijkqk, 411 = ( S i B i m  - SimSjr)qi 

realises an infinitesimal automorphism of SO(3) on qi. Now we have to consider an 
arbitrary Rosenfeld algebra H ;  = Am 0 0, 

H i  = R 0 0=0, H i = C O 0 ,  H i = Q O 0 ,  H;=O 0 0. 

Denote by qAm imaginary units of A". Basic elements of Hs" are 

1, ea, qAm, eaqAm, A=1,2  . . . ;  

and involution is given by 

The external multiplication may be introduced naturally in H? by (3), (7) and (8) for 
q ;  and ea separately and by 

qAmVea=O (9) 

(qzea ) V (4 E i{qAmqB"I(ea V e p )  + 4{eaepI(qAm V 48" 1. (10) 

(I, qAmt qAmg, ea, cap, eaqAm)n 

Basic elements of the corresponding ,$-construction are 

Thus the [-construction over algebra H ;  introduces its infinitesimal automorphisms 
in the latter. Using it one may simplify the Tits-Vinberg construction (Vinberg 1966) 
for the Lie algebras of exceptional groups and utilise the latter efficiently in gauge 
theory construction. Namely, an element of Lie algebra of exceptional group F4, Eg, 
E,, E8 is represented by a sum of anti-Hermitian traceless matrix and infinitesimal 
automorphism in H i ,  H i ,  H i  and H ;  respectively. ,$HY being introduced gives us 
the possibility of representing such an element as a single 3 X 3 anti-Hermitian matrix 
over which is a sum of the anti-Hermitian traceless matrix over Hs" and some 
linear combination of elements qzB and eo@ 

B= d + (aABq AmB + ahpeap) (12) 
where E is the 3 X 3 unit matrix. 

mutator: 
The Lie multiplication takes a simple form and is given by a generalised com- 

[ d & ] g  = [A?&] -iTr[A?&]E + i T r [ d  V &]E. (13) 
Here [d&] is a matrix commutator, [d V 931 is a matrix commutator in which matrix 
elements are externally multiplied. The last term on the right-hand side of (13) is 
needed for validity of the Jacobi identity and represents the corresponding term in the 
Tits-Vinberg construction in terms of ,$Hr. 

Thus, we have a realisation of the adjoint representation of any exceptional group 
as a corresponding anti-Hermitian 3 x 3  matrix. For the purpose of gauge theory 
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building we have to know the transformations of the fundamental representation. The 
following trick is convenient to obtain fundamental representations (especially having 
in mind 56 of E,). Using the fact that 

F4c E.5C E7 C Eg, (14) 

d=A+qAMa (15) 

with the help of decomposition of anti-Hermitian in H: matrix d :  

(where A is anti-Hermitian, MA are Hermitian 3 x 3 matrices over octonions) it is easy 
to extract an adjoint representation of the lower group from the adjoint represen- 
tation of any (except F4) group in (14) and, using (13), to establish the trans- 
formational properties of the remainder under transformations of this lower group. 
For example, after exclusion of 52 (adjoint representation of F4) from 78 (adjoint 
representation of E6), 26 components remain, transforming according to the 
fundamental representation of F4. In such a way we get the known decompositions 

78 = 52 + 26 E.5 with respect to F4: 

E,withrespecttoEg: 1 3 3 = 7 8 + 2 7 + 2 5 + 1  (16) 
E8 with respect to E7: 248 = 1 3 3 + 5 6 + 5 6 +  1 + 1 + 1 

and the following realisations of exceptional groups in fundamental representations 
given in table 2.  Now having all that is necessary, we proceed to build the gauge E6 
theory in octonion formalism. In such a theory the fundamental fermions combine in 
a 27-plet which is 3 X 3 matrix N over H i ,  such that N’ = N. The gauge fields (vector 
mesons) form a 78-plet and they are represented by an anti-Hermitian matrix dfi over 

Table 2. 

Group Adjoint Dim Fundamental Dim Realisation of group in 
representation representation fundamental represen- 

tation 

Anti-Hermitian 3 x 3 J t  

(12)) d 1  T r J = O  
F4 matrix oyer [HA (see 52 26 SFJ = [dl, J ]  

Anti-Hermitian 3 x 3, - 27 S k N  = &N + N& 7 8  N = J 1 + i J 2  
matrixover [H: S P ~  27 s,N=&N+N&+$ 
Anti-Hermitian 3 x 2 A set (X ,  Y, r), 6 )  where 6E,X = 22x + xdi 
rnatrixpver 6 ~ :  d4 r) ,  [ are complex numbers, + 2a* x Y - iaq -$4x 

+ q34E where a = Jl + iJ2, 

U=-  

E7 SP4 = SP2+ wa* + w*a 133 and X and Y are of 56 SE, Y = df Y + YGf+  
form J1 + iJ2 - 2 a x ~ + i a ( + f i & ~  

6 ~ r )  = -t i  Tr { a  *, X }  - i&r) 

S,[ = ti Tr {a ,  Y} + iq560 

41 + 4 2  

2 

Anti-Hermitian 3 X 2 
matrixover [H: d g  248 representation dg 

Coincides with a_djoint 
248 See(13) 

t Here a symbol J is used for Hermitian 3 x 3 matrix over Q. 
t Here and thereafter a symbol ‘+’  denotes Hermitian conjugation in 63 while symbol ‘*’ 
denotes replacement i +  - i .  
5 Freudenthal product is: a X b =&{a, b}-Tr(a)b -Tr(b)a + (Tr(a)Tr(b)-$Tr{a, b})E).  



Exceptional gauge theories in 3 x 3 matrix formalism 1423 

&I:. The covariant derivative is given by 

D,N = a,N +e(d,N + Nd;)  

where e is equivalent to the gauge constant, spinor indices being suppressed. The 
covariant curl of vector field is 

gWV = a,& - a d ,  + e[d,dv]g.  (18) 

Tr{N*, M }  (19a) 

Tr{N*, ( d M + M d + ) }  (196) 

Tr(& + &*d*). (19c) 

For representations under consideration bilinear and trilinear invariants are 

Here N, M are 27-plets, d, & are 78-plets. Using equation (19) the invariant 
Lagrangian is written in the compact form 

2’=Tr{N*, 0 N } + T r ( ~ , ~ ” + & ’ ” ” * ~ ~ , , )  (20) 

0 = y@,, spinor indices being suppressed. Analogously it is easy to introduce the 
scalar field, transforming as 27 or 78 in the theory. The trilinear invariant 

T r ( 9  x 9), 9}, 9 = 27 (21) 

is useful for constructing its Higgs self-interaction together with (19a) and its square. 
This very compact and elegant form of the Eg gauge theory can be translated into the 
customary language of complex numbers using the so called split basis of the Cayley 
algebra: 

ea + iea+3 ea - 1ea+3 
2 

U: = 

U; =- 

2 ’  
U, = 

a = 1 ,2 ,3 .  (22) 
1 -ie7 1 +ie7 uo = -. 

2 ’  2 

The advantages of such a basis were mentioned by Gursey and Gunaydin (1973) (see 
the corresponding multiplication table therein). We should remark only that U, and 
U: transform as a triplet and anti-triplet respectively under SU‘(3). The latter is the 
subgroup of the automorphism group of octonions which leaves e7 invariant and which 
is identified with the colour symmetry in the theories under consideration. 

Introducing the split-basis in fundamental and adjoint representations one comes 
to the following decompositions of matrices over octonions 

N=Mu$ + M T ~ o + M a u :  +N,u, (23) 

where M is a usual (complex) matrix of general form, ‘T’ denotes transposition of the 
matrix, N, and Ma are complex matrices of the form 

0 
- wa 
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where B and B are anti-Hermitian traceless complex matrices, A,  is a traceless 
complex matrix of general form, and o,k, e k  are real; '+ '  with respect to usual matrices 
means Hermitian conjugation. Known decompositions of E6 with respect to the 
maximal subgroup SU(3) 0 SU(3) 0 SU'(3) 

27 = (3.~.1')+(3.1.~')+(1.3.3') 

78 = (8.1.1') + (1.8.1') + (3.3.3") + (3.3.3') + (1.1.8') 
(25) 

are derived immediately from definitions (13) and table 2, provided the generators of 
SU(3)1(2) groups (remaining after extraction of SU'(3)) are 

e7+ i  
2 

e7-i 
2 

su(3)1: __ A, = i u;A, A, - Gell-Mann matrices 

(26) 
SU(3)*: - A, = -iuoh, a = 1 , 2  , . . . ,  8. 

According to these decompositions M transforms as (3.3.1'), Ma as (3.1.3'), N, as 
(1.3.3'), B as (8.1.1'), B as (1.8.1'), Gik as (1.1.8') and A, as (3.3.3') and A,' as 
(3.3.3'), A, = A a  +$ie,E respectively. Here 

6ke7k gavz + gz&'a, e, =- e, + iea+3, U ,  = e,, + ieTa+3, CY = 1 ,2 ,3 .  

The interaction Lagrangian in terms of these decompositions is written as 

Zinint= eTr(M+ B M + M * l ? M T + M ; k , M T +  N:A,'MT 

-M:BM, - N , * ~ N ,  - $ M , * G ~ A P A ~ M ~  
- +N: A $ N ~  - M,*A ; N , X , ~ ~  + N , *kp7~,PY + HC (27) 

( A  = 1, 2 ,  . . . 8) where we defined Gikeiku, = GaA$puO, A$ is a realisation of SU'(3) 
over U,; '*' over the matrix means complex conjugation, B = y,B, 'etc. If electric 
charge in such a theory is defined as 

Q = Q i + Q 2  ( 2 8 )  
where Q1(2) is the electric charge operator in SU(3)1(2) (cf Giirsey 1975), then matrix 
M in the 27-plet of fermions will represent leptons, N, and Ma are quarks and 
anti-quarks. Among vector mesons we find intermediate bosons of the weak inter- 
action B, and Bfi, gluons GAS which mediate strong interaction and lepto-quarks A,, 
whose interactions do not conserve baryon number. The structure of all interactions is 
evident from (27). Now we shall discuss briefly the E, theory, which is most interes- 
ting in view of the applications. Note that the known decompositions with respect to 
maximal subgroup SU(6) 0 SU'(3) can be easily obtained directly from (13) and 
table 2 .  

56 = (20.1')+(6.3')+(6.~') 

133 = (35.1')+ (15.3')+ (c.3 ')+ (1.8'). 
(29) 

In comparison with the above E6 scheme E7 theory contains a richer spectrum of 
leptons, additional quarks, lepto-quarks and intermediate bosons. The kinetic term of 
the theory is built with the help of invariant 

t*[+ T*T  +Tr  ${X*X}+Tr ${  Y*Y} .  
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The unitary transformation, connecting representation 56* and 56, can be easily 
found 

56*+(-  Y*,X*,  -[*, ~ * ) = 5 6 .  (31) 

(This reflects the pseudoreality of this representation.) Hence, another form of this 
invariant exists : 

51 m - &TI  + Tr 4 {XI, Y J  - Tr ~ { X Z ,  Yd (32) 

t*AE,,f+T*AE,q+Tr $ { X * ,  AE7X}+Trt{Y*, A E 7 Y } + ~ c  (33) 

(Xi, yI, ti, T ~ ) ,  i = 1,2 are two 56-plets. An interaction is given by invariant 

where A E ~  is the E7 transformation given in table 2 in which all parameters are 
replaced by corresponding gauge fields which are multiplied by y matrices. The 
kinetic term and interaction for vector fields are built with the help of invariant 

T r ( d 4 g 4  + ) (34) 

( #  denotes quaternion conjugation), in complete analogy with Eg theory. Again, the 
introduction of scalar 56-plet or 133-plet is possible. Its self-interaction is given in the 
first case by the invariant 

Tr t {X x X, Y X Y} - [Tr ${X x X, X }  - TTr :{ Y x Y, Y} - $(Tr ;{XY} - 6.1)' (3 5) 

(cf Jacobson 1971). To understand the structure of the theory we need the interaction 
Lagrangian in a reduced form. Making use of decompositions (notation is the same as 
in table 2) 

X = M u t  +MTu0+Mau,* +Naua 

Y = P U ~ + P ~ U O + P ~ U , * + T , U ,  (36) 
T a = a o u t  +aouo+a,u,* +ci,u, 

we obtain the Lagrangian of interactions as a sum of terms (27) for X and Y 
separately and the following expression carrying new peculiar E7 interactions 

Zint E7 = eTr[M'a:P +M*u$PT - M*a ,*Pa - M+a',* Tu - M,*a :Pa - M,*6,*PT 

+ eao,.A4,*ag T, - N,*atT, - N,*a,*P + eaoJV,*~p*P, -Tr(M)a:P 

+;Tr(M)a,*P, + $Tr(M)a':T, + Tr(M*)Tr(a; )P-  M'PTr(a:) 

+ tM,*PaTr(a 0' ) + tN,* T,Tr(a 0') - M+a:Tr(P) - $M,*Q',* Tr(P) 

-~N,*a,Tr(P)-fi$JM+M +ai$J(M,*M, + N~N,)-iq({M+ao} 

-(M,*aa +N,*a',)]+(X+ Y, a*+ -a ,  7 + -t>+i&+4ifTr[{aoP} 

-(Zapa -aaTa)] -if$Jq -&jTr[{a&'vf}- (a,*M, +a',*N,)] + H C .  (37) 

Here ( X +  Y, a* + -a,  77 + -8) denotes terms obtained from the previous ones by 
these replacements. 

The Lagrangian (37) has a clear structure and fixes all the new couplings in the 
theory in comparison with that of E7. Its length reflects a richer symmetry in the E7 
case. 
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3. Conclusion 

Thus, it has been shown that the 3 X 3 matrix formalism gives the exceptional gauge 
theories in compact and clear form and essentially simplifies their treatment. The 
evident structure of the theory in such a formalism makes the task of physical model 
building much more easy and clarifies the problem of assignment. These subjects will 
be discussed elsewhere. 
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